

Uptake Rate Tests

Tests for a range of compounds onto four sorbent types over periods of 1 and 2 weeks

Author: Veronica Brown

Report Number: HG/2022/16

UPTAKE RATE TESTS

Report approved by:	L Davies Health Capability Group				
Date of Issue:	27 September 2022				
Lead Author:	V Brown Analytical Chemistry				
Customer:	Markes International Ltd.				
Technical Reviewer(s):	I Pengelly Analytical Chemistry				
Editorial Reviewer:	I Pengelly Analytical Chemistry				
Project number:	HSE-SDPE08609				
Distribution list:	Markes International Ltd.				

Disclaimer:

This report and the work it describes were undertaken by the Health and Safety Executive (HSE) under contract to Markes International Ltd. Its contents, including any opinions and/or conclusions expressed or recommendations made, do not supersede current HSE policy or guidance.

Contents

Introduction	2
Methods	3
Samplers	3
Analytes	3
Standard Atmosphere	3
Breakthrough Test	5
Uptake Rate Test	5
Preliminary Analysis at HSE	7
Main Test Analysis at Markes	8
Results	9
Breakthrough Test	9
Real Time Concentration Data	11
Real Time Temperature and Humidity	13
Chamber Concentrations	15
Uptake Rates for 1 and 2 Weeks	20
Conclusions	29
Appendices	30

Introduction

Markes International commissioned the Science Division (SD) of the Health and Safety Executive (HSE) to undertake testing of thermal desorption type passive tube samplers containing four different sorbents. This work is described in project proposal HSE-SD Uptake Rate Tests PE08609. The objective of this study was to enable the determination of diffusive uptake rates for a range of analytes on these samplers by exposing them to low levels of chemical vapours under controlled conditions.

Before commencing the uptake rate tests, HSE generated a vapour comprising a mixture of 21 volatile organic compounds (VOCs) in air using bespoke standard atmosphere generation equipment and undertook a 10 litre breakthrough test on the two sorbents to be used for active sampling. This showed that the proposed test conditions were suitable for all of the components, with the exception of dichloromethane. After consultation with the Client, it was therefore agreed to remove this compound from the test mix and replace it with n-hexane.

HSE then proceeded to expose sets of samplers to an atmosphere of the 21 compounds each at a nominal target concentration of 5 parts per billion (ppb). For these tests exposure times of 1 and 2 weeks were used. In addition, HSE collected samplers using pumped sampling for approximately 24 hour periods and accurately recorded collected sample volumes. At the end of the test the diffusive and pumped samplers were collected, sealed and returned to the Client for analysis. On supply of GC/MS data HSE calculated concentrations of the target compounds in the chamber over the exposure period and uptake rates for these compounds over the 1 and 2 week periods.

Methods

Samplers

Markes International supplied the samplers required for the diffusive sampling (Carbograph 1TD [C1TD], Carbopack B [CB], Carbograph 5TD [C5TD] and Carbopack X [CX]) and those required for the active sampling (C5TD and CX Safelok tubes). These samplers were all freshly packed and had been pre-conditioned. On receipt at HSE the tubes were conditioned at 350°C for a total time of 1 hour using a Markes TC-20 and a nitrogen flow of 80 ml.min⁻¹. Three of each sorbent type were analysed before the tests and no presence of any contamination was observed.

Analytes

The agreed components to be used for testing are shown in Table 1.

Standard Atmosphere

The HSE standard atmosphere generation facility is based upon procedures described in ISO 6145-4:2004. This ISO standard specifies a method for the continuous production of stable gas mixtures, containing two or more components, generated from the vaporisation of liquid mixes via the continuous injection of such components into a gas stream by means of a syringe. In addition, gaseous components can be introduced into the exposure chamber from pressurised cylinders or permeation tubes at a known dilution. Loading facilities of this type have been routinely used by HSE to prepare proficiency testing samples over the last 20 years and to undertake a range of studies of breakthrough volumes and uptake rate tests.

The standard atmosphere facility used for these tests consisted of the following components:

- A motorised syringe to inject the liquid test mixture into a heated (50°C) glass chamber.
- A GasTec PD-1B gas generation system to generate 1,3-butadiene from sealed permeation tubes.
- Vapour mixing chambers for air dilution. A proportion of the diluent air stream was humidified.
- A 20 litre glass exposure chamber to expose the sorbent tubes.
- A Signal HM 3000 on-line flame ionisation detector (FID), to monitor the vapour concentration.
- A Vaisala HMP 273 calibrated temperature and humidity logger.

- An Eluteng fan, to control the air speed through the exposure chamber
- Mass flow controllers (MFCs), to control the flow of air used to vaporise the solvent mixture, the diluent air, the air flow to the FID and to collect active samples
- In-house proprietary software, written in LabVIEW.

Compound	Phase	CAS No.	Boiling point (°C)
1,3-Butadiene	Gas	106-99-0	-4
1,1-Dichloroethene	Liquid	75-35-4	32
n-Pentane	Liquid	109-66-0	36
Dichloromethane ¹	Liquid	75-09-2	40
Chloroform	Liquid	67-66-3	61
n-Hexane ²	Liquid	110-54-3	69
1,1,1-Trichloroethane	Liquid	71-55-6	74
Acrylonitrile	Liquid	107-13-1	77
Ethyl acetate	Liquid	141-78-6	77
Carbon tetrachloride	Liquid	56-23-5	77
Benzene	Liquid	71-43-2	80
Propan-2-ol	Liquid	67-63-0	82
1,2-Dichloroethane	Liquid	107-06-2	83
Trichloroethene	Liquid	79-01-6	87
n-Heptane	Liquid	142-82-5	98
Methyl methacrylate	Liquid	80-62-6	101
Toluene	Liquid	108-88-3	111
Tetrachloroethene	Liquid	127-18-4	121
2-Methoxyethanol	Liquid	109-86-4	124
n-Octane	Liquid	111-65-9	125
Ethylbenzene	Liquid	100-41-4	136
p-Xylene	Liquid	106-42-3	138

Table 1: Components to be used for Testing

¹ Removed from list following breakthrough test; ² Added to list following breakthrough test

Breakthrough Test

A mixture of the components of interest was prepared to give airborne concentrations in the atmosphere of between 25 and 120 ppb depending on FID response. A higher concentration was selected than was used for the uptake rate test to ensure that breakthrough levels of \geq 1% onto the secondary tube would be detectable. Pairs of tubes containing either C5TD or CX sorbent were set up in series connected with a brass Swagelock union. Six replicate sets of each sorbent were used. The tubes were placed into the exposure chamber and each connected to an MFC set to give a flow of 19 ml.min⁻¹ \pm 0.4%. Active sampling was undertaken for 7 hours to give a sampling volume of 8 litres. Before analysis the breakthrough tubes were purged with dry nitrogen, in the sampling direction, for 27 minutes at a flow of 75 ml.min⁻¹ using a Markes International TC20 (sampling volume of 2 litres to give a total volume of 10 litres).

Uptake Rate Test

Chamber set up

The test mixture of the liquid analytes was prepared as shown in Table 2. The VOC atmosphere was generated by injection of the mixture of liquid analytes, at a flow rate of 0.3 μ l.min⁻¹, into a flow of clean air. The air flow was diluted as it passed through the mixing chambers and directed into the exposure chamber. The 1,3-butadiene was introduced into the chamber at a flow rate of 500 ml.min⁻¹ from the Gastec gas generator. Test samples were taken to check that concentrations of components in the exposure chamber were in the range requested by the Client (nominally 5 ppb). The atmosphere was allowed to equilibrate overnight before commencing the test.

The air speed in the exposure chamber was checked before the start of the test using a calibrated air velocity meter (TSI TA430) and was found to be approximately 0.2 m.s⁻¹. Variations in concentration level were recorded at intervals of 10 seconds during the test using on-line FID. Relative humidity and temperature were also monitored every 10 seconds.

Diffusive Samplers

Sets of sampling tubes of sorbent types C1TD, CB, C5TD and CX were exposed for one nominal 168 hour and one 336 hour period, with the exact exposure periods, in minutes, being recorded. Samplers were hung vertically with the diffusion heads at the lowest position. Each set of samplers comprised 8 samplers fitted with standard diffusion heads plus 2 blanks placed in the exposure chamber next to the samples. A further 3 blanks of each sorbent type were located in the base plate of the exposure chamber. Samplers were placed in the exposure chamber as indicated in Table 3. Full details of samplers exposed are given in Tables A1 to A8.

Compound	Molecular weight	Density (a/ml)	Volume added (ml)	Expected composition (%w/w)
1,1-Dichloroethene	96.9	1.21	0.56	4.72
n-Pentane	72.1	0.63	0.81	3.49
Chloroform	119.4	1.50	0.56	5.78
n-Hexane	86.2	0.65	0.93	4.25
1,1,1-Trichloroethane	133.4	1.32	0.71	6.64
Acrylonitrile	53.1	0.81	0.46	2.62
Ethyl acetate	88.1	0.90	0.69	4.29
Carbon tetrachloride	153.8	1.59	0.68	7.60
Benzene	78.1	0.88	0.63	3.84
Propan-2-ol	60.1	0.79	0.54	2.95
1,2-Dichloroethane	98.9	1.25	0.56	4.90
Trichloroethene	131.4	1.46	0.64	6.50
n-Heptane	100.2	0.68	1.04	4.94
Methyl methacrylate	100.1	0.94	0.75	4.95
Toluene	92.1	0.87	0.75	4.52
Tetrachloroethene	165.8	1.62	0.72	8.16
2-Methoxyethanol	76.1	0.97	0.56	3.77
n-Octane	114.2	0.70	1.15	5.62
Ethylbenzene	106.2	0.87	0.87	5.28
p-Xylene	106.2	0.86	0.87	5.19

Table 2: Details of Liquid Mixture used in Syringe to Generate VOC atmosphere

Days 1-7	Days 8-14			
8 x 336 hr Set – C	1TD (plus 5 blanks)			
8 x 336 hr Set – 0	CB (plus 5 blanks)			
8 x 336 hr Set – C5TD (plus 5 blanks)				
8 x 336 hr Set – 0	CX (plus 5 blanks)			
8 x 168 hr Set – C1TD (plus 5 blanks) 8 x 168 hr Set – CB (plus 5 blanks)				
	8 x 168 hr Set – C5TD (plus 5 blanks)			
	8 x 168 hr Set – CX (plus 5 blanks)			

Table 3: Introduction of Samplers to the Chamber

Active Samplers

Fourteen sets of active samples were taken over the 14 day sampling period, using Safelock sample tubes and collecting one active sample on sorbent 5TD and one on sorbent CX per set. Samples were collected for periods of approximately 24 hours, with the time being recorded to the nearest minute. The MFCs used for active sampling were calibrated prior to the test using a calibrated flowmeter (Gilian Gilbrator 3) to give a flow rate of 5 ml.min⁻¹ \pm 1%. The flows were checked with the flowmeter before and after collection of each active sample. Exposed tubes were stored at room temperature until returned to Markes for analysis at the end of the 2-week diffusive exposure period. Sampling details are given in Table A9.

Preliminary Analysis at HSE

Analysis of breakthrough tubes and test samplers for checking atmosphere concentration was undertaken at HSE using thermal desorption with gas chromatography and flame ionisation (GC/FID). Thermal desorption and GC parameters used are given below:

TD: Graphitised carbons: 330°C for 8 min, Tenax/GR: 280°C for 8 min, no inlet split, desorb flow 100 ml.min⁻¹, outlet split 15 ml.min⁻¹, purge 1 min, trap hold 2 min, cold trap Tenax/Unicarb at -30°C to 280°C.

GC: Column flow: 0.8 ml.min⁻¹, column: 50 m BP1 x 0.22 mm ID x 1 μ m film thickness, temperature program: 35°C for 13 min, 5°C/min to 80°C, 10°C/min to 130°C, 20°C/min to 250°C, hold for 5 min.

Calibration of the analytical system for the 20 liquid components was undertaken using methanolic solutions. A multi-point calibration covering the range of expected analyte masses for the breakthrough tubes and test samples was obtained by analysis of tubes containing conditioned Tenax GR sorbent spiked with 1 μ l or 3 μ l of the relevant standard solutions. Standard tubes were purged with clean nitrogen for 6 minutes at a flow rate of 25 ml.min⁻¹. Calibration of 1,3-butadiene was undertaken by spiking controlled volumes of a reference gas containing 5 ppm of 1,3-butadiene in nitrogen onto tubes containing conditioned CX sorbent using gas-tight syringes. Tubes were spiked in a flow of nitrogen at a flow rate of approximately 100 ml.min⁻¹ and purged for 1 minute. Further sets of standard tubes were prepared to supply to Markes for analysis of the samplers for the uptake rate test. Loadings for the standard tubes are given in Tables A11 to A12.

Main Test Analysis at Markes

This section is based on information provided by Markes. The analysis carried out at Markes used a Markes TD100-xr automated thermal desorption system coupled to a GC-MS. An internal standard (D8-toluene) was automatically added to the sampling end of the sorbent tube or focusing trap (for the system blank) from a gas standard as part of each analytical run. Background checks were carried out first (including system and sorbent tube blanks). Example blank chromatograms are shown in Figure A1.

Samples were automatically and quantitatively re-collected during analysis to allow test runs to be repeated if required. In order to accommodate the different sorbent used, it was necessary to vary the tube desorption temperature during the sequence so this parameter of the thermal desorption method was 'unlocked'. 'Unlocking' is a convenient facility for method development as it allows parameters to be modified in the automation sequence table rather than creating two or more analytical methods.

TD: Flow path temperature: 150°C. Pre-desorption: Pre-purge time 1 minute; Trap in line with 50 ml.min⁻¹ flow. Internal standard: D8-toluene (10ppm); injection volume 1 ml. Tube desorption: Desorb time 8 minutes; desorb temperature 280°C (Tenax GR) or 330°C (Graphitised carbon); Trap in line 100 ml.min⁻¹ flow. Trap desorption: Tenax TA and Sulficarb trap; Purge time 1 minute (50 ml.min⁻¹ flow); Trap temperature -30°C to 280°C, trap desorb time 7 minutes; Trap split flow 19 ml.min⁻¹.

GC: 60 m x 0.25 mm x 1 µm DB1 column; Column flow 1 ml.min⁻¹; constant flow. Temperature program: Initial temperature 35° for 13 minutes; 3°C/min to 80°C, 10°C/min to 110°C, 5°C/min to 130°C, 20°C/min to 200°C. MS Acquisition mode: Scan; Mass Range 30 - 300; MSD transfer line temperature 290°C; MS source temperature 230°C; MS quad temperature 150°C.

Example chromatograms for diffusive samples collected over one and two weeks are shown in Figures A2 and A3 respectively.

Results

Breakthrough Test

The mean percentage carryover found for the 21 analytes on the two sorbents is given in Table 4. Under the test conditions, dichloromethane was found to show significant breakthrough on both sorbents. After consultation with the Client it was therefore agreed not to include this compound in the uptake rate study and to replace in with n-hexane. The observation that n-pentane does not show any breakthrough under the test conditions provided sufficient confidence that this would also be the case for n-hexane. Acrylonitrile was found to break through using a sampling volume of 10 litres on C5TD, but not significantly on CX, suggesting that use of values from the CX active samples may be preferable for this compound in the uptake rate test. No other compounds were found to break through significantly (>5%) on either sorbent. The recoveries and repeatability obtained for each compound on the two sets of primary samplers can also be used to indicate which might be the preferred sorbent from which to take concentration values from trable 5.

Compound	% Carryover using C5TD	% Carryover using CX
1,3-Butadiene	<1.0%	1.8%
1,1-Dichloroethene	<1.0%	<1.0%
n-Pentane	<1.0%	<1.0%
Dichloromethane	71.5%	48.5%
Chloroform	<1.0%	1.0%
1,1,1-Trichloroethane	<1.0%	<1.0%
Acrylonitrile	34.5%	1.5%
Ethyl acetate	<1.0%	<1.0%
Carbon tetrachloride	<1.0%	<1.0%
Benzene	<1.0%	<1.0%
Propan-2-ol	<1.0%	<1.0%
1,2-Dichloroethane	<1.0%	<1.0%
Trichloroethene	<1.0%	<1.0%
n-Heptane	<1.0%	<1.0%
Methyl methacrylate	<1.0%	<1.0%
Toluene	<1.0%	<1.0%
Tetrachloroethene	<1.0%	<1.0%
2-Methoxyethanol	<1.0%	<1.0%
n-Octane	<1.0%	<1.0%
Ethylbenzene	<1.0%	<1.0%
p-Xylene	<1.0%	<1.0%

Table 4: Mean % Breakthrough found using 10 litre Sampling Volume

	C5TD (n	= 6)	CX (n =	Preferred	
Compound	Mean Concentration (ppb)	%RSD	Mean Concentration (ppb)	%RSD	sorbent for active samples
1,3-Butadiene	56.4	7.9%	52.2	7.5%	Either
1,1-Dichloroethene	68.2	1.9%	71.7	3.4%	Either
n-Pentane	38.8	1.7%	38.2	3.2%	Either
Dichloromethane	21.8	3.7%	46.6	8.7%	Neither
Chloroform	102	2.3%	26.8	66.4%	C5TD
1,1,1-Trichloroethane	113	1.8%	104	7.7%	C5TD
Acrylonitrile	20.3	2.8%	27.5	3.8%	CX
Ethyl acetate	68.1	1.9%	43.5	22.3%	C5TD
Carbon tetrachloride	112	2.1%	74.1	44.9%	C5TD
Benzene	35.2	1.7%	34.1	3.8%	Either
Propan-2-ol	73.7	1.8%	60.6	5.0%	C5TD
1,2-Dichloroethane	73.6	1.9%	67.2	6.4%	C5TD
Trichloroethene	108	1.8%	83.8	23.8%	C5TD
n-Heptane	36.3	1.9%	34.9	4.2%	Either
Methyl methacrylate	34.7	1.9%	24.3	29.2%	C5TD
Toluene	36.9	2.6%	35.5	3.9%	Either
Tetrachloroethene	108	2.2%	107	4.4%	Either
2-Methoxyethanol	122	2.0%	72.4	39.7%	C5TD
n-Octane	37.0	2.0%	35.0	5.4%	Either
Ethylbenzene	37.0	1.8%	35.3	4.6%	Either
p-Xylene	36.9	1.9%	34.7	5.5%	Either

Table 5: Comparison of Chamber Concentrations (ppb) Determined duringbreakthrough test using C5TD and CX

Real Time Concentration Data

Graphical plots of on-line FID data from the standard atmosphere rig are given in Figures 1 to 3 and show the sum concentration of VOC as methane equivalent (the calibration gas). The resultant mean concentrations and relative standard deviations (%RSD) are given in

Table 6. This shows that, while the level fluctuates on a short term basis, the average concentration remained fairly stable across the two week period. Note that for environmental concentrations the FID samples from a point prior to the final dilution of the air flow.

		Real Time FID	
Time Period (hrs)	Mean Concentration (ppm)	%RSD (all data)	%RSD (daily means)
0-168	46.4	17.1	0.7
168-336	45.9	15.1	1.7
0-336	46.1	16.2	1.4

Table 6: Mean FID response for each Sample Exposure Period

Figure 1: FID Data – 0 to 168 hours of the 14 day test

Figure 2: FID Data – 168 to 336 hours of the 14 day test

Figure 3: FID Data – 0 to 336 hours of the 14 day test

Real Time Temperature and Humidity

The mean temperature during the test was 22.0°C and the relative humidity was 51.1%. Plots of continuous real time data are given in Figures 4 to 6 and the mean, %RSD, minimum and maximum data are given in Table 7.

Time Temperature (°C)					Humidity (%RH)			
(hrs)	Mean	%RSD	Min	Max	Mean	%RSD	Min	Max
0 - 168	22.1	1.61%	21.1	23.0	51.0	1.22%	48.1	52.9
168 - 336	22.0	1.48%	21.0	22.7	51.3	1.31%	46.6	53.3
0 - 336	22.0	1.58%	21.0	23.0	51.1	1.29%	46.6	53.3

 Table 7 Temperature and Humidity Range

Figure 4: Temperature and Humidity Data – 0 to 168 hours of the 14 day test

Figure 5: Temperature and Humidity Data – 168 to 336 hours of the 14 day test

Figure 6: Temperature and Humidity Data – 0 to 336 hours of the 14 day test

Chamber Concentrations

On receipt of the GC/MS data from Markes, the concentrations of the analytes in the chamber were calculated by quantifying the data from the active samples using response factors given by the calibration tubes. Small amounts of benzene and toluene (\leq 4 ng)

were found on blank tubes. Mean benzene and toluene peak areas on the blanks were used to correct the sample peak areas. Table 8 shows the mean concentrations for each compound using the 12 C5TD tubes for which results were obtained and for the 14 CX tubes.

As in the breakthrough test, lower recovery and higher variability was found for some compounds using the CX tubes than using the C5TD tubes (with no ethyl acetate or methyl methacrylate being detected in the CX tubes). No results were obtained for 2-methoxyethanol from the active samplers, with no peak being detected with the CX tubes and only very small peaks with C5TD. The reasons for this are unclear, but could be due to the polarity of this compound. Consequently, it is not possible to determine uptake rates for this compound from this test.

Results obtained using CX tubes were not used in the determination of uptake rates for propan-2-ol, acrylonitrile, ethyl acetate, chloroform, 1,2-dichloroethane, 1,1,1- trichloroethene, carbon tetrachloride, trichloroethene and methyl methacrylate. The mean concentrations of all compounds over the 2 weeks obtained using the remaining tubes are given in Table 9 and the variation in concentration of selected compounds is shown in Figures 7 and 8. The concentrations are seen to be between 4 and 9 ppb and to be adequately stable over time.

Compound	C5TD ((n = 12)	CX (n = 14)		
Compound	Mean	%RSD	Mean	%RSD	
1,3-Butadiene	5.6	2.6%	6.5	2.3%	
Propan-2-ol	5.7	8.4%	0.7	23.6%	
Acrylonitrile	4.6	4.6%	4.0	20.2%	
n-Pentane	8.4	4.5%	9.1	3.3%	
1,1-Dichloroethene	6.9	5.1%	7.9	6.2%	
Ethyl acetate	4.2	11.0%	NR ¹	NR	
n-Hexane	7.1	3.5%	7.5	2.0%	
Chloroform	5.6	4.7%	0.1	71.5%	
2-Methoxyethanol	NR	NR	NR	NR	
1,2-Dichloroethane	5.8	4.4%	1.6	71.0%	
1,1,1-Trichloroethane	5.8	4.3%	3.9	21.9%	
Benzene	6.3	3.8%	6.4	1.7%	
Carbon tetrachloride	5.2	4.1%	1.4	60.0%	
Trichloroethene	4.6	4.4%	0.7	110%	
Methyl methacrylate	4.1	10.9%	NR	NR	
n-Heptane	6.8	3.1%	7.1	1.4%	
Toluene	6.3	3.3%	6.3	1.6%	
n-Octane	6.7	2.8%	6.8	2.8%	
Tetrachloroethene	4.8	3.6%	4.5	2.9%	
Ethylbenzene	6.3	3.0%	6.2	2.7%	
p-Xylene	6.1	3.1%	5.9	4.5%	

Table 8: Mean Concentrations (ppb) obtained from Analysis of CX and C5TD Active Samples

¹ NR = no result

Common d	First week		Second week		2 weeks		
Compound	Mean	%RSD	Mean	%RSD	Mean	%RSD	Sorbent
1,3-Butadiene	6.1	2.6%	6.1	1.3%	6.1	2.0%	Both
Propan-2-ol	6.0	10.0%	5.5	4.7%	5.7	8.4%	C5TD
Acrylonitrile	4.7	4.9%	4.5	3.2%	4.6	4.6%	C5TD
n-Pentane	9.1	3.4%	8.5	1.6%	8.8	4.4%	Both
1,1-Dichloroethene	7.8	4.6%	7.1	2.6%	7.5	6.0%	Both
Ethyl acetate	4.3	8.8%	4.1	12.9%	4.2	11.0%	C5TD
n-Hexane	7.5	2.7%	7.2	1.4%	7.3	2.9%	Both
Chloroform	5.8	6.0%	5.5	1.5%	5.6	4.7%	C5TD
1,2-Dichloroethane	5.9	6.1%	5.7	1.4%	5.8	4.4%	C5TD
1,1,1-Trichloroethane	5.9	5.4%	5.7	1.8%	5.8	4.3%	C5TD
Benzene	6.5	2.1%	6.3	1.2%	6.4	2.4%	Both
Carbon tetrachloride	5.4	4.6%	5.1	1.8%	5.2	4.1%	C5TD
Trichloroethene	4.8	5.5%	4.5	1.4%	4.6	4.4%	C5TD
Methyl methacrylate	4.2	9.2%	4.1	12.6%	4.1	10.9%	C5TD
n-Heptane	7.1	2.4%	6.9	1.3%	7.0	2.2%	Both
Toluene	6.4	2.0%	6.3	1.6%	6.3	2.1%	Both
n-Octane	6.8	2.6%	6.8	1.9%	6.8	2.2%	Both
Tetrachloroethene	4.7	2.0%	4.6	2.2%	4.6	2.2%	Both
Ethylbenzene	6.3	2.0%	6.2	2.2%	6.3	2.0%	Both
p-Xylene	6.0	2.5%	6.0	3.1%	6.0	2.7%	Both

Table 9: Mean Concentrations (ppb) for the 1 and 2 week Exposure Periods usingthe Preferred Sorbent(s)

Figure 7: Variation in Concentration over Time for Selected Analytes - 1

Figure 8: Variation in Concentration over Time for Selected Analytes - 2

Uptake Rates for 1 and 2 Weeks

GC/MS data produced by Markes were used to calculate uptake rates for the target analytes on each of the four sorbents for exposure periods of 1 and 2 weeks. Small amounts of benzene and toluene (\leq 4 ng) were found on unexposed blank tubes. No other compounds were observed on the blank tubes which had been placed in the chamber capped. Mean benzene and toluene peak areas on the blanks were used to correct the sample peak areas prior to calculation of uptake rates.

Uptake rates were determined by dividing the mean normalised peak areas for each compound from a set of 8 diffusive samplers with the mean peak areas per ml from the active samplers for the appropriate sampling period. The value obtained is then divided by the sampling time for the diffusive samplers to give a sampling rate as ml/min. Uptake rates (as ng/ppm/min) are then obtained by multiplying the sampling rate by the molecular weight of the compound and dividing by the molar gas volume (taken as 24.2 for a temperature of ~22°C). Sampling rates on the four sorbents are given in Tables 10 to 13 and uptake rates in Tables 14 to 17, together with the % relative standard deviations obtained for the 8 replicates.

Excellent repeatability was obtained within the 8 replicate analyses for the majority of compounds on each of the different sorbents, providing confidence in the performance of these compounds on the sorbents tested. However, as with the active samples, some compounds showed greater variability and lower recovery in some of the data sets. Such variations in performance may be due to variety of potential factors including:

Back diffusion, resulting in lower than expected uptake rates (highlighted in blue in the Tables), can occur for more volatile compounds on weaker sorbents. Compounds that may be affected in this way are butadiene, propan-2-ol and acrylonitrile on C1TD and CB and 1,1-dichloroethene on C1TD.

Some instances of high variability could be due to activity on the sorbent (highlighted in pink in the Tables). Compounds where this may be a factor are ethyl acetate, chloroform, 1,2-dichloroethane and methyl methacrylate on CB and CX; 1,1-dichloroethene and 1,1,1-trichloroethane on CB and propan-2-ol, acrylonitrile, carbon tetrachloride and trichloroethene on CX.

Ethyl acetate and methyl methacrylate (highlighted in green in the Tables) showed some variable results on C1TD and repeatable but unfeasibly high results on C5TD. It is unclear if this is due to storage or analytical issues. The observation of good repeatability on C5TD suggests that these compounds are performing effectively on this sorbent for diffusive sampling, but that the uptake rates obtained for these compounds may be being influenced by poor results from the active samplers.

2-Methoxyethanol was observed on C5TD but not on the other sorbents. It was not possible to derive an uptake rate for this compound due to variability in the peaks areas obtained and lack of reliable active sampling data.

	1 weel	< (n = 8)	2 weeks (n = 8)		
Compound	Mean	%RSD	Mean	%RSD	
1,3-Butadiene	0.09	7.8%	0.05	4.0%	
Propan-2-ol	0.01	9.6%	0.01	12.8%	
Acrylonitrile	0.10	5.9%	0.06	3.4%	
n-Pentane	0.35	2.4%	0.35	2.4%	
1,1-Dichloroethene	0.14	4.8%	0.08	4.9%	
Ethyl acetate	0.27	15.0%	0.35	5.6%	
n-Hexane	0.43	1.4%	0.47	2.6%	
Chloroform	0.22	1.7%	0.16	2.1%	
1,2-Dichloroethane	0.26	1.5%	0.21	2.1%	
1,1,1-Trichloroethane	0.29	3.0%	0.25	1.6%	
Benzene	0.47	2.4%	0.45	1.8%	
Carbon tetrachloride	0.33	1.9%	0.26	2.6%	
Trichloroethene	0.39	2.4%	0.34	1.8%	
Methyl methacrylate	0.48	7.4%	0.61	1.6	
n-Heptane	0.43	1.9%	0.49	3.9%	
Toluene	0.51	1.5%	0.52	2.4%	
n-Octane	0.41	2.3%	0.46	3.0%	
Tetrachloroethene	0.41	2.6%	0.36	2.8%	
Ethylbenzene	0.48	1.7%	0.49	2.6%	
p-Xylene	0.50	1.8%	0.50	2.5%	

Table 10: Sampling rates (ml/min) obtained for Carbograph 1TD

Compound	1 week	x (n = 8)	2 weeks (n = 8)		
Compound	Mean	%RSD	Mean	%RSD	
1,3-Butadiene	0.18	5.9%	0.11	7.4%	
Propan-2-ol	NR ¹	NR	NR	NR	
Acrylonitrile	0.10	37.0%	0.06	4.9%	
n-Pentane	0.40	1.4%	0.40	2.0%	
1,1-Dichloroethene	0.20	9.5%	0.15	10.9%	
Ethyl acetate	NR	NR	NR	NR	
n-Hexane	0.44	3.3%	0.47	2.1%	
Chloroform	0.20	14.5%	0.19	3.0%	
1,2-Dichloroethane	0.25	8.9%	0.25	12.0%	
1,1,1-Trichloroethane	0.28	13.1%	0.29	5.1%	
Benzene	0.51	2.4%	0.50	1.3%	
Carbon tetrachloride	0.33	5.3%	0.32	2.2%	
Trichloroethene	0.46	1.9%	0.43	1.4%	
Methyl methacrylate	NR	NR	0.01	60.8%	
n-Heptane	0.43	2.4%	0.46	1.8%	
Toluene	0.51	1.4%	0.52	1.6%	
n-Octane	0.40	1.9%	0.43	1.7%	
Tetrachloroethene	0.41	2.0%	0.39	2.1%	
Ethylbenzene	0.48	1.6%	0.49	1.8%	
p-Xylene	0.49	1.6%	0.49	1.9%	

Table 11: Sampling Rates (ml/min) obtained for Carbopack B

¹ NR = no result obtained

Compound	1 week	x (n = 8)	2 weeks (n = 8)		
Compound	Mean	%RSD	Mean	%RSD	
1,3-Butadiene	0.49	2.2%	0.48	4.0%	
Propan-2-ol	0.63	1.2%	0.54	2.7%	
Acrylonitrile	0.54	2.0%	0.39	3.3%	
n-Pentane	0.64	2.0%	0.67	2.6%	
1,1-Dichloroethene	0.49	1.7%	0.43	3.2%	
Ethyl acetate	1.03	2.5%	1.06	3.2%	
n-Hexane	0.56	1.6%	0.58	2.7%	
Chloroform	0.55	1.3%	0.51	2.7%	
1,2-Dichloroethane	0.61	1.6%	0.58	2.6%	
1,1,1-Trichloroethane	0.54	1.7%	0.53	2.5%	
Benzene	0.64	1.1%	0.63	2.8%	
Carbon tetrachloride	0.56	1.5%	0.51	2.6%	
Trichloroethene	0.56	1.3%	0.52	3.1%	
Methyl methacrylate	0.89	1.3%	0.91	2.5%	
n-Heptane	0.52	1.5%	0.54	2.7%	
Toluene	0.57	1.3%	0.56	2.7%	
n-Octane	0.47	1.7%	0.49	2.9%	
Tetrachloroethene	0.52	1.4%	0.47	3.2%	
Ethylbenzene	0.52	1.3%	0.51	2.7%	
p-Xylene	0.52	1.3%	0.51	2.7%	

Table 12: Sampling Rates (ml/min) obtained for Carbograph 5TD

Compound	1 week	x (n = 8)	2 weeks (n = 8)		
Compound	Mean	%RSD	Mean	%RSD	
1,3-Butadiene	0.54	1.6%	0.50	2.8%	
Propan-2-ol	NR ¹	NR	NR	NR	
Acrylonitrile	0.32	5.9%	0.32	8.9%	
n-Pentane	0.55	1.7%	0.55	5.0%	
1,1-Dichloroethene	0.52	7.5%	0.46	5.1%	
Ethyl acetate	0.04	29.7%	0.09	19.6%	
n-Hexane	0.50	2.6%	0.52	4.0%	
Chloroform	0.01	19.5%	0.01	13.1%	
1,2-Dichloroethane	0.10	6.3%	0.14	13.5%	
1,1,1-Trichloroethane	0.41	2.1%	0.44	4.7%	
Benzene	0.60	1.5%	0.60	3.5%	
Carbon tetrachloride	0.22	4.7%	0.24	9.1%	
Trichloroethene	0.07	15.2%	0.11	15.1%	
Methyl methacrylate	0.09	43.9%	0.25	15.5%	
n-Heptane	0.46	1.8%	0.47	4.0%	
Toluene	0.54	1.4%	0.54	3.0%	
n-Octane	0.42	1.4%	0.43	3.7%	
Tetrachloroethene	0.47	1.3%	0.45	2.9%	
Ethylbenzene	0.49	1.5%	0.49	3.1%	
p-Xylene	0.49	1.4%	0.49	3.1%	

Table 13: Sampling Rates (ml/min) obtained for Carbopack X

¹ NR = no result obtained

Compound	1 week	x (n = 8)	2 weeks (n = 8)		
Compound	Mean	%RSD	Mean	%RSD	
1,3-Butadiene	0.19	7.8%	0.11	4.0%	
Propan-2-ol	0.04	9.6%	0.03	12.8%	
Acrylonitrile	0.21	5.9%	0.13	3.4%	
n-Pentane	1.03	2.4%	1.04	2.4%	
1,1-Dichloroethene	0.56	4.8%	0.33	4.9%	
Ethyl acetate	0.95	15.0%	1.22	5.6%	
n-Hexane	1.57	1.4%	1.73	2.6%	
Chloroform	1.08	1.7%	0.80	2.1%	
1,2-Dichloroethane	1.07	1.5%	0.85	2.1%	
1,1,1-Trichloroethane	1.57	3.0%	1.35	1.6%	
Benzene	1.51	2.4%	1.45	1.8%	
Carbon tetrachloride	2.12	1.9%	1.67	2.6%	
Trichloroethene	2.12	2.4%	1.87	1.8%	
Methyl methacrylate	1.99	7.4%	2.54	1.6%	
n-Heptane	1.80	1.9%	2.02	3.9%	
Toluene	1.95	1.5%	1.97	2.4%	
n-Octane	1.95	2.3%	2.15	3.0%	
Tetrachloroethene	2.80	2.6%	2.49	2.8%	
Ethylbenzene	2.12	1.7%	2.14	2.6%	
p-Xylene	2.19	1.8%	2.18	2.5%	

Table 14: Uptake Rates (ng/ppm/min) obtained for Carbograph 1TD

Compound	1 week	x (n = 8)	2 weeks (n = 8)		
Compound	Mean	%RSD	Mean	%RSD	
1,3-Butadiene	0.40	5.9%	0.24	7.4%	
Propan-2-ol	NR ¹	NR	NR	NR	
Acrylonitrile	0.21	37.0%	0.14	4.9%	
n-Pentane	1.20	1.4%	1.18	2.0%	
1,1-Dichloroethene	0.89	9.5%	0.59	10.9%	
Ethyl acetate	NR	NR	NR	NR	
n-Hexane	1.60	3.3%	1.72	2.1%	
Chloroform	0.97	14.5%	0.95	3.0%	
1,2-Dichloroethane	1.01	8.9%	1.03	12.0%	
1,1,1-Trichloroethane	1.56	13.1%	1.62	5.1%	
Benzene	1.65	2.4%	1.63	1.3%	
Carbon tetrachloride	2.09	5.3%	2.01	2.2%	
Trichloroethene	2.49	1.9%	2.36	1.4%	
Methyl methacrylate	NR	NR	0.03	60.8%	
n-Heptane	1.79	2.4%	1.90	1.8%	
Toluene	1.95	1.4%	1.99	1.6%	
n-Octane	1.89	1.9%	2.03	1.7%	
Tetrachloroethene	2.82	2.0%	2.69	2.1%	
Ethylbenzene	2.13	1.6%	2.15	1.8%	
p-Xylene	2.15	1.6%	2.16	1.9%	

Table 15: Uptake Rates (ng/ppm/min) obtained for Carbopack B

¹ NR = no result obtained

Compound	1 week	x (n = 8)	2 weeks (n = 8)		
Compound	Mean	%RSD	Mean	%RSD	
1,3-Butadiene	1.09	2.2%	1.06	4.0%	
Propan-2-ol	1.56	1.2%	1.33	2.7%	
Acrylonitrile	1.18	2.0%	0.86	3.3%	
n-Pentane	1.92	2.0%	2.01	2.6%	
1,1-Dichloroethene	1.96	1.7%	1.74	3.2%	
Ethyl acetate	3.60	2.5%	3.72	3.2%	
n-Hexane	2.05	1.6%	2.12	2.7%	
Chloroform	2.70	1.3%	2.50	2.7%	
1,2-Dichloroethane	2.48	1.6%	2.38	2.6%	
1,1,1-Trichloroethane	2.99	1.7%	2.90	2.5%	
Benzene	2.05	1.1%	2.02	2.8%	
Carbon tetrachloride	3.54	1.5%	3.26	2.6%	
Trichloroethene	3.04	1.3%	2.82	3.1%	
Methyl methacrylate	3.68	1.3%	3.75	2.5%	
n-Heptane	2.15	1.5%	2.23	2.7%	
Toluene	2.18	1.3%	2.13	2.7%	
n-Octane	2.22	1.7%	2.32	2.9%	
Tetrachloroethene	3.53	1.4%	3.22	3.2%	
Ethylbenzene	2.28	1.3%	2.26	2.7%	
p-Xylene	2.27	1.3%	2.25	2.7%	

Table 16: Uptake Rates (ng/ppm/min) obtained for Carbograph 5TD

Compound	1 week	1 week (n = 8)		s (n = 8)
	Mean	%RSD	Mean	%RSD
1,3-Butadiene	1.21	1.6%	1.12	2.8%
Propan-2-ol	NR ¹	NR	NR	NR
Acrylonitrile	0.71	5.9%	0.71	8.9%
n-Pentane	1.63	1.7%	1.65	5.0%
1,1-Dichloroethene	2.07	7.5%	1.84	5.1%
Ethyl acetate	0.13	29.7%	0.32	19.6%
n-Hexane	1.82	2.6%	1.88	4.0%
Chloroform	0.05	19.5%	0.06	13.1%
1,2-Dichloroethane	0.41	6.3%	0.59	13.5%
1,1,1-Trichloroethane	2.25	2.1%	2.40	4.7%
Benzene	1.93	1.5%	1.93	3.5%
Carbon tetrachloride	1.37	4.7%	1.54	9.1%
Trichloroethene	0.40	15.2%	0.58	15.1%
Methyl methacrylate	0.35	43.9%	1.04	15.5%
n-Heptane	1.90	1.8%	1.95	4.0%
Toluene	2.05	1.4%	2.05	3.0%
n-Octane	1.98	1.4%	2.04	3.7%
Tetrachloroethene	3.20	1.3%	3.09	2.9%
Ethylbenzene	2.14	1.5%	2.15	3.1%
p-Xylene	2.13	1.4%	2.16	3.1%

Table 17: Uptake Rates (ng/ppm/min) obtained for Carbopack X

¹ NR = no result obtained

Conclusions

This project has determined uptake rates for a range of VOCs on four sorbents over exposure periods of 1 and 2 weeks. The majority of values obtained showed low variability and consistency over the different exposure periods. The more volatile compounds showed more variable results on the weaker sorbents, probably as a result of back diffusion over the extended exposure periods. An issue of low recovery/high variability was also identified for some of the compounds during both active and passive sampling from CX sorbent, which is thought to arise from activity on the sorbent. The same issue was found to affect some passive results on CB. Results obtained for ethyl acetate and methyl methacrylate on C1TD and C5TD remain unexplained. Further tests are planned at HSE to investigate storage and uptake rates at occupational level for these compounds on this set of sorbents.

Appendices

Tube Number	Date Start	Time Start	Date End	Time End	Exposure period (min)	Notes	
803311							
803112							
803113						Samplo	
803114	46/02/22	14:20	<u> </u>	14:20	10.090	fitted with	
803115	10/03/22	GMT	23/03/22	23/03/22 GMT	GMT	GMT 10,080	diffusive
803116						gauze	
803117							
803118							
803119							
803120						.	
803131						Chamber blank	
803132							
803133							
803137						Travel	
803138						blank	

Table A1: Diffusive Sampling Details – Carbograph 1TD, 1 week

Tube Number	Date Start	Time Start	Date End	Time End	Exposure period (min)	Notes	
803121							
803122							
803123						Sample	
803124	16/03/22	14:20	20/02/22	15:20	20 160	fitted with	
803125	10/03/22	GMT	30/03/22	BST	BST	BST	diffusive
803126						gauze	
803127							
803128							
803129							
803130						.	
803136						Chamber blank	
803135							
803134							
803139						Travel	
803140						blank	

Table A2: Diffusive Sampling Details – Carbograph 1TD, 2 week

Tube Number	Date Start	Time Start	Date End	Time End	Exposure period (min)	Notes
809925						
809930						
809928						Sample
809926	16/03/22	14:20	23/03/22	14:20	10.090	fitted with
809921	10/03/22	GMT		GMT	GMT	diffusive
809924						gauze
809913						
809906						
809923						
809902						
809922						Chamber blank
809903						
809904						
809907						Travel
809908						blank

Table A3: Diffusive Sampling Details – Carbopack B, 1 week

Tube Number	Date Start	Time Start	Date End	Time End	Exposure period (min)	Notes
809920						
809918						
809914						Sample
809915	16/03/22	14:20	30/03/22	15:20	20 160	fitted with
809911	10/03/22	GMT	30/03/22	BST	BST	diffusive
809910						gauze
809912						
809927						
809916						
809919						.
809917						Chamber blank
809901						
809905						
809909						Travel
809929						blank

Table A4: Diffusive Sampling Details – Carbopack B, 2 week

Tube Number	Date Start	Time Start	Date End	Time End	Exposure period (min)	Notes
802951						
802952						
802953						Samplo
802954	22/02/22	14:22	20/02/22	15:20	10.079	fitted with
802955	23/03/22	GMT	30/03/22	BST	10,076	diffusive
802956						gauze
802957						
802958						
802959						
802960						.
808391						Chamber blank
808392						
808393						
808397						Travel
808398						blank

Table A5: Diffusive Sampling Details – Carbograph 5TD, 1 week

Tube Number	Date Start	Time Start	Date End	Time End	Exposure period (min)	Notes
802961						
802962						
802963						Samplo
802964	16/02/22	14:20	20/02/22	15:20	20.460	fitted with
802965	10/03/22	GMT	30/03/22	BST	20,100	diffusive
802966						gauze
802967						
802968						
802969						
802970						.
808394						Chamber blank
808395						<i>a</i> rann
808396						
808399						Travel
808400						blank

Table A6: Diffusive Sampling Details – Carbograph 5TD, 2 week

Tube Number	Date Start	Time Start	Date End	Time End	Exposure period (min)	Notes
808371						
808372						
808373						Sample
808374	22/02/22	14:22	20/02/22	15:20	10.079	fitted with
808375	23/03/22	GMT	30/03/22	BST	10,078	diffusive
808376						gauze
808377						
808378						
808379						
808380						
752391						Chamber blank
752392						
752393						
808626						Travel
808632						blank

Table A7: Diffusive Sampling Details – Carbopack X, 1 week

Tube Number	Date Start	Time Start	Date End	Time End	Exposure period (min)	Notes
808381						
808382						
808383						Samplo
808384	16/02/22	14:20	20/02/22	15:20	20 160	fitted with
808385	10/03/22	GMT	30/03/22	BST	20,100	diffusive
808386						gauze
808387						
808388						
808389						
808390						
752394						Chamber blank
752395						<i>a</i> rann
752397						
808638						Travel blank

Table A8: Diffusive Sampling Details – Carbopack X, 2 week

Day	Date	Sorbent	Tube No.	Time On	Flow before (ml/min)	Time Off	Flow after (ml/min)	Volume (litres)
1	16-17/03/22	5TD	808616	14:20	5.04	14:20	5.00	7.23
1	16-17/03/22	СХ	808623	14:20	5.02	14:20	4.95	7.18
2	17-18/03/22	5TD	808601	14:29	5.02	14:05	4.93	7.04
2	17-18/03/22	СХ	808633	14:29	5.00	14:05	4.91	7.02
3	18-19/03/22	5TD	808612	14:14	4.93	14:26	4.96	7.18
3	18-19/03/22	СХ	808640	14:14	4.90	14:26	4.89	7.11
4	19-20/03/22	5TD	808613	14:35	4.97	14:54	5.00	7.27
4	19-20/03/22	СХ	808635	14:35	4.92	14:54	4.95	7.20
5	20-21/03/22	5TD	808606	15:08	5.05	14:17	5.01	6.99
5	20-21/03/22	СХ	808639	15:08	4.99	14:17	4.96	6.91
6	21-22/03/22	5TD	808617	14:26	5.00	14:10	5.00	7.12
6	21-22/03/22	СХ	808636	14:26	4.96	14:10	4.95	7.06
7	22-23/03/22	5TD	808608	14:28	5.00	14:20	4.99	7.15
7	22-23/03/22	СХ	808631	14:28	4.97	14:20	4.97	7.12
8	23-24/03/22	5TD	808610	14:40	4.98	14:41	5.04	7.22
8	23-24/03/22	СХ	808627	14:40	4.96	14:41	4.98	7.16
9	24-25/03/22	5TD	808620	14:52	5.04	14:52	5.00	7.23
9	24-25/03/22	СХ	808625	14:52	5.01	14:52	4.98	7.19
10	25-26/03/22	5TD	808603	15:01	5.00	15:35	4.99	7.36
10	25-26/03/22	СХ	808621	15:01	4.98	15:35	4.94	7.31
11	26-27/03/22	5TD	808602	15:54	5.07	15:45 *	4.99	6.95
11	26-27/03/22	СХ	808624	15:54	5.02	15:45 *	5.01	6.88
12	27-28/03/22	5TD	808611	15:53 *	5.08	15:57 *	5.05	7.31
12	27-28/03/22	СХ	808628	15:53 *	4.98	15:57 *	5.05	7.24
13	28-29/03/22	5TD	808605	16:15 *	5.08	15:36 *	5.06	7.10
13	28-29/03/22	СХ	808629	16:15 *	5.01	15:36 *	5.08	7.07
14	29-30/03/22	5TD	808604	15:44 *	5.10	15:20 *	5.17	7.27
14	29-30/03/22	СХ	808637	15:44 *	5.06	15:20 *	5.14	7.22

Table A9: Active Sampling Volumes

* BST

Table A10: Blanks for Active Samples

Sorbent	Tube Number
5TD	808615
5TD	808618
5TD	808609
СХ	808630
СХ	808634
СХ	808622

Table A11: Loadings for 1,3-Butadiene Standard Tubes

Standard Identity	Loading (ng)
Std 1G	11.9
Std 2G	47.6
Std 3G	95.2
Std 4G	154.6
Std 5G	297.4

Component	Std 1L	Std 2L	Std 3L	Std 4L	Std 5L
1,1-Dichloroethene	6.9	20.9	76.0	229.6	833.5
n-Pentane	5.0	15.0	54.5	164.6	597.5
Chloroform	8.3	25.0	90.9	274.6	997.0
n-Hexane	5.5	16.6	60.3	182.2	661.4
1,1,1- Trichloroethane	8.6	26.1	94.8	286.5	1039.9
Acrylonitrile	4.6	13.9	50.5	152.5	553.5
Ethyl acetate	6.5	19.8	71.7	216.6	786.2
Carbon tetrachloride	11.6	35.1	127.3	384.6	1396.0
Benzene	5.8	17.5	63.4	191.4	694.9
Propan-2-ol	5.1	15.5	56.1	169.5	615.4
1,2-Dichloroethane	7.0	21.3	77.2	233.2	846.4
Trichloroethene	9.5	28.8	104.6	316.1	1147.6
n-Heptane	6.5	19.8	71.8	216.9	787.4
Methyl methacrylate	7.4	22.5	81.6	246.5	894.8
Toluene	6.3	19.0	69.1	208.7	757.5
Tetrachloroethene	11.8	35.8	129.9	392.4	1424.4
2-Methoxyethanol	6.3	19.0	68.9	208.1	755.4
n-Octane	7.9	23.7	86.2	260.4	945.3
Ethylbenzene	6.3	19.0	68.9	208.1	755.5
p-Xylene	6.3	18.9	68.6	207.1	751.8

Table A12: Loadings (in ng) for Liquid Component Standard Tubes

Uptake Rate Tests

Figure A1: GC/MS Chromatograms - Blanks (data supplied by Markes)

Figure A2: GC/MS Chromatogram - 1 week diffusive C5TD (data supplied by Markes)

Figure A3: GC/MS Chromatogram - 2 week diffusive C5TD (data supplied by Markes)

HSE through its Science Division, is one of the world's leading providers of health and safety solutions to industry, government and professional bodies. The main focus of our work is on understanding and reducing health and safety risks. We provide health and safety consultancy, research, specialist training and products to our customers worldwide. Our long history developing health and safety solutions means that we're well placed to understand the changing industrial, regulatory and societal landscape, and to anticipate future issues. We employ over 360 scientific, medical and technical specialists, drawing on their wealth of knowledge and experience to deliver evidence-based solutions to our clients. Our work is supported by accredited management systems.

HSE Science and Research Centre

Harpur Hill Buxton Derbyshire SK17 9JN UK W: <u>https://solutions.hse.gov.uk</u> T: +44 (0)203 028 2000 E: <u>business.enquiries@hse.gov.uk</u>